Since the introduction of the fluorescence-labeled antibody method by Coons et al. [Immunological properties of antibody containing a fluorescent group. Proc Soc Exp Biol Med 47, 200-2002], many immunohistochemical methods have been refined to obtain high sensitivity with low background staining at both light and electron microscopic levels. Heat-induced antigen retrieval (HIAR) reported by Shi et al. in the early 1990s has greatly contributed to immunohistochemical analysis for formalin-fixed and paraffin-embedded (FFPE) materials, particularly in the field of pathology. Although antigen retrieval techniques including enzyme digestion, treatment with protein denaturants and heating have been considered tricky and mysterious techniques, the mechanisms of HIAR have been rapidly elucidated. Heating cleaves crosslinks (methylene bridges) and add methylol groups in formaldehyde-fixed proteins and nucleic acids and extends polypeptides to unmask epitopes hidden in the inner portion of antigens or covered by adjacent macromolecules. In buffers having an appropriate pH and ion concentration, epitopes are exposed without entangling the extended polypeptides during cooling process, since polypeptides may strike a balance between hydrophobic attraction force and electrostatic repulsion force. Recent studies have demonstrated that HIAR is applicable for immunohistochemistry with various kinds of specimens, i.e., FFPE materials, frozen sections, plastic-embedded specimens, and physically fixed tissues at both the light- and electron-microscopic levels, and have suggested that the mechanism of HIAR is common to aldehyde-fixed and aldehyde-unfixed materials. Furthermore, heating has been shown to be effective for flow cytometry, nucleic acid histochemistry (fluorescein in situ hybridization (FISH), in situ hybridization (ISH), and terminal deoxynucleotidyl transferase-mediated nick labeling (TUNEL)), and extraction and analysis of macromolecules in both FFPE archive materials and specimens processed by other procedures. In this article, we review mechanism of HIAR and application of heating in both immunohistochemistry and other histochemical reactions.
Emoto K, Yamashita S, Okada Y. Emoto K, et al. J Histochem Cytochem. 2005 Nov;53(11):1311-21. doi: 10.1369/jhc.5C6627.2005. Epub 2005 Jul 11. J Histochem Cytochem. 2005. PMID: 16009962
Yamashita S, Okada Y. Yamashita S, et al. J Histochem Cytochem. 2005 Nov;53(11):1421-32. doi: 10.1369/jhc.4A6579.2005. Epub 2005 Jul 26. J Histochem Cytochem. 2005. PMID: 16046672
Ezaki T. Ezaki T. Kaibogaku Zasshi. 1996 Dec;71(6):615-28. Kaibogaku Zasshi. 1996. PMID: 9038004 Review. Japanese.
Yamashita S, Katsumata O. Yamashita S, et al. Methods Mol Biol. 2017;1560:147-161. doi: 10.1007/978-1-4939-6788-9_10. Methods Mol Biol. 2017. PMID: 28155151
Leong TY, Leong AS. Leong TY, et al. Adv Anat Pathol. 2007 Mar;14(2):129-31. doi: 10.1097/PAP.0b013e31803250c7. Adv Anat Pathol. 2007. PMID: 17471119 Review.
Hara A, Taniguchi T, Kanayama T, Tomita H. Hara A, et al. Methods Mol Biol. 2024;2794:21-32. doi: 10.1007/978-1-0716-3810-1_3. Methods Mol Biol. 2024. PMID: 38630217
Van Haver D, Dendooven A, Impens F. Van Haver D, et al. Methods Mol Biol. 2023;2718:213-233. doi: 10.1007/978-1-0716-3457-8_12. Methods Mol Biol. 2023. PMID: 37665462
Zhao W, Zhu H, Zhao X, Wu X, Sun F, Pan M, Zhou S. Zhao W, et al. Clin Cosmet Investig Dermatol. 2023 May 10;16:1233-1241. doi: 10.2147/CCID.S408613. eCollection 2023. Clin Cosmet Investig Dermatol. 2023. PMID: 37197669 Free PMC article.
Pu J, Xue C, Huo S, Shen Q, Qu Y, Yang X, An B, Angel TE, Chen Z, Mehl JT, Tang H, Yang E, Sikorski TW, Qu J. Pu J, et al. Anal Chem. 2023 Jan 17;95(2):924-934. doi: 10.1021/acs.analchem.2c03473. Epub 2022 Dec 19. Anal Chem. 2023. PMID: 36534410 Free PMC article.
Dressler FF, Schoenfeld J, Revyakina O, Vogele D, Kiefer S, Kirfel J, Gemoll T, Perner S. Dressler FF, et al. Clin Proteomics. 2022 May 2;19(1):10. doi: 10.1186/s12014-022-09346-0. Clin Proteomics. 2022. PMID: 35501693 Free PMC article.